- CITY GUIDE
- PODCAST
-
11°
Τεχνητή νοημοσύνη προβλέπει τη διάρκεια ζωής ασθενών
Μέσω ανάλυσης εικόνων των οργάνων τους
Τη δυνατότητα πρόγνωσης της διάρκειας ζωής ενός ασθενούς απλά και μόνο μέσω ανάλυσης εικόνων των οργάνων του από έναν υπολογιστή «ξεκλειδώνει» νέα έρευνα του University of Adelaide.
Η έρευνα δημοσιεύτηκε στο Scientific Reports και είναι ιδιαίτερα σημαντική για τον τομέα των διαγνώσεων, ειδικά για σοβαρές ασθένειες.
Ειδικότερα, επιστήμονες από το School of Public Health και το School of Computer Science του πανεπιστημίου, μαζί με άλλους συνεργάτες από την Αυστραλία και το εξωτερικό, χρησιμοποίησαν τεχνητή νοημοσύνη για να αναλύσουν ιατρικές εικόνες από τα στήθη 48 ασθενών.
Η ανάλυση αυτή μπόρεσε να οδηγήσει σε προβλέψεις σχετικά με το ποιοι θα πέθαιναν μέσα σε πέντε χρόνια, με ακρίβεια της τάξης του 69%, η οποία πλησιάζει αυτήν των «κανονικών» προγνώσεων από γιατρούς. Όπως αναφέρεται σε ανακοίνωση του πανεπιστημίου, πρόκειται για την πρώτη μελέτη τέτοιου τύπου που περιλαμβάνει ιατρικές εικόνες και τεχνητή νοημοσύνη.
«Η πρόγνωση του μέλλοντος ενός ασθενούς είναι χρήσιμη επειδή μπορεί να επιτρέψει σε γιατρούς να προσαρμόζουν θεραπείες σε ασθενείς» είπε ο δόκτωρ Λουκ Όουκντεν- Ρέινερ, επικεφαλής ερευνητής στο School of Public Health του πανεπιστημίου.
«Η ακριβής αξιολόγηση της βιολογικής ηλικίας και η πρόβλεψη της μακροζωίας ενός ασθενούς μέχρι τώρα περιορίζονταν από την αδυναμία των γιατρών να δουν μέσα στο σώμα και να εκτιμήσουν την υγεία του κάθε οργάνου. Η έρευνά μας διερεύνησε τη χρήση του «deep learning», μιας τεχνικής όπου τα συστήματα υπολογιστή μπορούν να μαθαίνουν πώς να κατανοούν και να αναλύουν εικόνες. Αν και για αυτή τη μελέτη χρησιμοποιήθηκε μόλις ένα μικρό δείγμα ασθενών, η έρευνά μας υποδεικνύει πως ο υπολογιστής έχει μάθε να αναγνωρίζει τις εμφανίσεις ασθενειών, κάτι που απαιτεί εκτενή εκπαίδευση ανθρώπων ειδικών» λέει ο Όουκντεν -Ρέινερ.
Αν και οι ερευνητές δεν ήταν σε θέση να αναγνωρίζουν επακριβώς τι ήταν αυτό που έβλεπε το σύστημα στις εικόνες για να κάνει τις προβλέψεις του, οι πιο «σίγουρες» εξ αυτών είχαν να κάνουν με ασθενείς με χρόνιες παθήσεις, όπως το εμφύσημα κ.α.
«Αντί να επικεντρώνουν στη διάγνωση ασθενειών, τα αυτόματα συστήματα μπορούν να προβλέπουν ιατρικές εξελίξεις με τρόπο που οι γιατροί δεν έχουν εκπαιδευτεί να το κάνουν, αξιοποιώντας μεγάλους όγκους δεδομένων και εντοπίζοντας λεπτά μοτίβα» προσθέτει ο Όουκντεν -Ρέινερ.
Με πληροφορίες από naftemporiki.gr
ΠΡΟΣΦΑΤΑ
ΤΑ ΠΙΟ ΔΗΜΟΦΙΛΗ
ΔΙΑΒΑΖΟΝΤΑΙ ΠΑΝΤΑ
ΔΕΙΤΕ ΕΠΙΣΗΣ
Πώς κατάφεραν να το αποτυπώσουν οι αστρονόμοι
«Ένα είδος Google Maps για την κυτταρική βιολογία»
Συνέντευξη με τη Δρ. Ζωή Αικατερινίδη C.E.O. Software Competitiveness International
Επανέρχεται το ζήτημα της δεσπόζουσας θέσης του κολοσσού της τεχνολογίας - Τι σχεδιάζει ο Ντόναλντ Τραμπ
Τι σημασία έχει να αναπτυχθεί η ΤΝ, το διαδίκτυο ή η γενετική μηχανική αν δεν οδηγήσουν στην ευημερία των ανθρώπων και των άλλων έμβιων όντων;
Ο Μαρίνος Σιαπάνης, CEO & Co-Founder της κορυφαίας εταιρείας iGaming, μας εξηγεί τα σχέδια της επόμενης μέρας
Μήπως ήρθε η ώρα να μάθετε βασικά Κλίνγκον, ίσα για να συνεννοείστε στο εστιατόριο;
Πώς μπορεί να χρησιμοποιηθεί η δυνατότητα αυτή από απατεώνες
Το μεγαλύτερο συνέδριο για την Παραγωγική Τεχνητή Νοημοσύνη επιστρέφει στις 18 Νοεμβρίου 2024 στο ΚΠΙΣΝ
Το επόμενο βήμα στη σύγχρονη εκπαίδευση
Το Amazon Haul υπηρετεί ακριβώς το ίδιο μοτίβο με τους ανταγωνιστές του
Βροχή οι 70+ σε κατάστημα τεχνολογίας. Κουνούσαν με απελπισία τις έξυπνες συσκευές που τους έκαναν να νιώθουν βλάκες
Το viral μήνυμα της καμπάνιας της Telekom που μοιράστηκε η COSMOTE με στόχο την ευαισθητοποίηση σχετικά με τις online δημοσιεύσεις παιδικών φωτογραφιών
Το πορτρέτο του μαθηματικού Άλαν Τούρινγκ δημιουργήθηκε από το Ai-Da, ένα από τα πιο προηγμένα ρομπότ στον κόσμο
Για τη Τεχνητή Νοημοσύνη γίνεται λόγος ήδη από το 1950
Το διαστημικό σκάφος απέχει περίπου 24 δισεκατομμύρια χιλιόμετρα από τη Γη
Ευχάριστα τα νέα από την αμερικάνικη διαστημική υπηρεσία
Όλος ο χρόνος του σύμπαντος δεν αρκεί σε έναν χιμπατζή για να γράψει τυχαία έργο του Σαίξπηρ
Μια συζήτηση για τη σημασία του Τηλεσκοπίου Ορίζοντα Γεγονότων και το ποια θα μπορούσε να είναι η μελλοντική κατεύθυνση της Αστρονομίας
Πρωταγωνίστρια και πάλι η Momo
Έχετε δει 20 από 200 άρθρα.